SIEMENS

MICROMASTER 420

0.12 kW - 11 kW

Warnings, Cautions and Notes

The following Warnings, Cautions and Notes are provided for your safety and as a means of preventing damage to the product or components in the machines connected.
Specific Warnings, Cautions and Notes that apply to particular activities are listed at the beginning of the relevant chapters and are repeated or supplemented at critical points throughout these chapters.
Please read the information carefully, since it is provided for your personal safety and will also help prolong the service life of your MICROMASTER 420 Inverter and the equipment you connect to it.

WARNING

> This equipment contains dangerous voltages and controls potentially dangerous rotating mechanical parts. Non-compliance with Warnings or failure to follow the instructions contained in this manual can result in loss of life, severe personal injury or serious damage to property.
> Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
> The DC link of all MICROMASTER modules remains at a hazardous voltage level for 5 minutes after all voltages have been disconnected. Therefore always wait for 5 minutes after disconnecting the inverter from the power supply before carrying out work on any modules. The drive unit discharges itself during this time.
$>$ This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 (level 3) and P0335. Motor overload protection can also be provided using an external PTC via a digital input.
$>$ This equipment is suitable for use in a circuit capable of delivering not more than 10,000 symmetrical amperes (rms), for a maximum voltage of $230 / 460 \mathrm{~V}$ when protected by an H or K type fuse, a circuit breaker or self-protected combination motor controller controller (for more details see Operating Instructions Appendix F).
$>$ Use Class $160 / 75^{\circ} \mathrm{C}$ copper wire only with the cross-sections as specified in the Operating Instructions..
> The mains input, DC and motor terminals carry dangerous voltages even if the inverter is inoperative, wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.

NOTES

> Before installing and commissioning, please read these safety instructions and warnings carefully and all the warning labels attached to the equipment.
> Make sure that the warning labels are kept in a legible condition and replace missing or damaged labels.
> Maximum permissible surrounding ambient temperature is $50^{\circ} \mathrm{C}$.

Contents

1 Installation 4
1.1 Clearance distances for mounting 4
1.2 Mounting dimensions 4
2 Electrical Installation 5
2.1 Technical Specifications 5
2.2 Power Terminals 6
2.3 Control terminals 6
2.4 Block diagram 7
3 Factory setting 8
3.1 50/60 Hz DIP switch 8
4 Communications 9
4.1 Establishing communications MICROMASTER $420 \Leftrightarrow$ STARTER 9
4.2 Establishing communications between the MICROMASTER $420 \Leftrightarrow$ AOP 9
4.3 Bus interface (CB) 10
5 BOP / AOP (Option) 11
5.1 Buttons and their Functions 11
5.2 Changing parameters using as an example P0003 "Access level" 12
6 Commissioning 13
6.1 Quick commissioning 13
6.2 Commissioning the application 15
6.2.1 Serial Interface (USS) 15
6.2.2 Selection of command source 16
6.2.3 Digital input (DIN). 16
6.2.4 Digital output (DOUT) 17
6.2.5 Selection of frequency setpoint. 17
6.2.6 Analog input (ADC) 18
6.2.7 Analog output (DAC) 19
6.2.8 Motor potentiometer (MOP) 20
6.2.9 Fixed frequency (FF). 20
6.2.10 JOG 21
6.2.11 Ramp-function generator (HLG) 21
6.2.12 Reference/limit frequencies 22
6.2.13 Motor control (V/f) 22
6.2.14 Inverter/motor protection 24
6.2.15 Inverter-specific Functions 25
6.3 Series commissioning 28
6.4 Parameter reset of factory setting 28
7 Displays and messages 29
7.1 LED status display 29
7.2 Fault messages and Alarm messages 29

1 Installation

1.1 Clearance distances for mounting

The inverters can be mounted adjacent to each other. If they are mounted on top of each other, however, a clearance of 100 mm has to be observed.

Fig. 1-1 Clearance distances for mounting

1.2 Mounting dimensions

	Frame Size	Drilling Dimensions		Tightening Torque	
		$\stackrel{\mathrm{H}}{\mathrm{~mm} \text { (Inch) }}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mm} \text { (Inch) } \end{gathered}$	Bolts	Nm (lbf.in)
	A	160 (6.30)	-	2xM4	2.5 (22.12)
	B	174 (6.85)	138 (5.43)	4xM4	
	C	204 (8.03)	174 (6.85)	4xM4	

Fig. 1-2 Mounting dimensions

2 Electrical Installation

2.1 Technical Specifications

1 AC 200 V - 240 V

Order No. 6SE6420-	$\frac{2 A B}{2 U C}$	$\begin{gathered} \text { 11- } \\ \text { 2AA1 } \end{gathered}$	$\begin{gathered} \text { 12- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 13- } \\ \text { 7AA1 } \end{gathered}$	$\begin{gathered} \text { 15- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 17- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 1BA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 5BA1 } \end{gathered}$	$\begin{gathered} \text { 22- } \\ \text { 2BA1 } \end{gathered}$	$\begin{gathered} \text { 23- } \\ 0 \mathrm{OCA} 1 \end{gathered}$
Frame Size		A					B			C
Inverter Output	kW	0.12	0.25	0.37	0.55	0.75	1.1	1.5	2.2	3.0
Rating	hp	0.16	0.33	0.5	0.75	1.0	1.5	2.0	3.0	4.0
Input Current	A	1.8	3.2	4.6	6.2	8.2	11.0	14.4	20.2	35.5
Output Current	A	0.9	1.7	2.3	3.0	3.9	5.5	7.4	10.4	13.6
Recommended Fuse	A	10	10	10	10	16	20	20	32	40
	3NA	3803	3803	3803	3803	3805	3807	3807	3812	3817
Input Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	2.5-6.0	2.5-6.0	4.0-6.0	6.0-10
	AWG	17-13	17-13	17-13	17-13	17-13	13-9	13-9	11-9	9-7
Output Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-6.0	1.0-6.0	1.0-6.0	1.5-10
	AWG	17-13	17-13	17-13	17-13	17-13	17-9	17-9	17-9	15-7
Tightening Torque	$\begin{aligned} & \text { Nm } \\ & \text { (lbf.in) } \end{aligned}$	$\begin{gathered} 1.1 \\ (10) \\ \hline \end{gathered}$					$\begin{gathered} \hline 1.5 \\ (13.3) \end{gathered}$			$\begin{aligned} & 2.25 \\ & (20) \\ & \hline \end{aligned}$

3 AC $200 \mathrm{~V}-240 \mathrm{~V}$

Order No. 6SE6420-	$\frac{2 A C}{2 U C}$	$\begin{array}{\|c} \text { 11- } \\ \text { 2AA1 } \end{array}$	$\begin{gathered} \text { 12- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \hline \text { 13- } \\ \text { 7AA1 } \end{gathered}$	$\begin{gathered} \text { 15- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 17- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 1BA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 5BA1 } \end{gathered}$	$\begin{gathered} \text { 22- } \\ \text { 2BA1 } \end{gathered}$	$\begin{gathered} 23- \\ 0 C A 1 \end{gathered}$	$\begin{gathered} \text { 24- } \\ \text { 0CA1 } \end{gathered}$	$\begin{gathered} 25- \\ 5 \mathrm{CA1} \end{gathered}$
Frame Size		A					B			C		
Inverter Output Rating	kW	0.12	0.25	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0	5.5
	hp	0.16	0.33	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5
Input Current	A	1.1	1.9	2.7	3.6	4.7	6.4	8.3	11.7	15.6	19.7	26.3
Output Current	A	0.9	1.7	2.3	3.0	3.9	5.5	7.4	10.4	13.6	17.5	22.0
Recommended Fuse	A	10	10	10	10	10	16	16	20	25	32	35
	3NA	3803	3803	3803	3803	3803	3805	3805	3807	3810	3812	3814
Input Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-6.0	1.0-6.0	1.0-6.0	2.5-10	2.5-10	4.0-10
	AWG	17-13	17-13	17-13	17-13	17-13	17-9	17-9	17-9	13-7	13-7	11-7
Output Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-6.0	1.0-6.0	1.0-6.0	1.5-10	2.5-10	4.0-10
	AWG	17-13	17-13	17-13	17-13	17-13	17-9	17-9	17-9	15-7	13-7	11-7
Tightening Torque	Nm (lbf.in)	$\begin{gathered} \hline 1.1 \\ (10) \\ \hline \end{gathered}$					$\begin{gathered} 1.5 \\ (13.3) \\ \hline \end{gathered}$			$\begin{aligned} & 2.25 \\ & (20) \\ & \hline \end{aligned}$		

3 AC 380 V-480 V

Order No. 6SE6420-	$\frac{2 A D}{2 U D}$	$\begin{gathered} \text { 13- } \\ \text { 7AA1 } \end{gathered}$	$\begin{gathered} \text { 15- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 17- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 1AA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} 22- \\ \text { 2BA1 } \end{gathered}$	$\begin{gathered} 23- \\ \text { 0BA1 } \end{gathered}$	$\begin{aligned} & 24- \\ & \text { 0BA1 } \end{aligned}$	$\begin{gathered} \text { 25- } \\ \text { 5CA1 } \end{gathered}$	$\begin{gathered} \text { 27- } \\ \text { 5CA1 } \end{gathered}$	$\begin{aligned} & \text { 31- } \\ & \text { 1CA1 } \end{aligned}$
Frame Size		A					B			C		
Inverter Output Rating	kW	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0	5.5	$\begin{gathered} \hline 7.5 \\ 10.0 \end{gathered}$	$\begin{aligned} & 11.0 \\ & 15.0 \end{aligned}$
	hp	0.5	0.75	1.0	1.5	2.0	3.0	4.0	5.0	7.5		
Input Current	A	2.2	2.8	3.7	4.9	5.9	8.8	11.1	13.6	17.3	23.1	33.8
Output Current	A	1.2	1.6	2.1	3.0	4.0	5.9	7.7	10.2	13.2	19.0	26.0
Recommended Fuse	A	10	10	10	10	10	16	16	20	20	25	35
	3NA	3803	3803	3803	3803	3803	3805	3805	3807	3807	3810	3814
Input Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-6.0	1.0-6.0	1.5-6.0	2.5-10	4.0-10	$\begin{gathered} \hline 6.0-10 \\ 9-7 \end{gathered}$
	AWG	17-13	17-13	17-13	17-13	17-13	17-9	17-9	15-9	13-7	11-7	
Output Cable	mm^{2}	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-2.5	1.0-6.0	1.0-6.0	1.0-6.0	1.5-10	2.5-10	$\begin{array}{\|c} \hline 4.0-10 \\ 11-7 \end{array}$
	AWG	17-13	17-13	17-13	17-13	17-13	17-9	17-9	17-9	15-7	13-7	
Tightening Torque	Nm (lbf.in)	$\begin{gathered} \hline 1.1 \\ (10) \\ \hline \end{gathered}$					$\begin{gathered} 1.5 \\ (13.3) \end{gathered}$			$\begin{aligned} & 2.25 \\ & (20) \\ & \hline \end{aligned}$		

2.2 Power Terminals

You can gain access to the mains and motor terminals by removing the front covers.

| SDP (BOP/AOP)
 release and remove | Push the terminal
 cover down |
| :---: | :---: | :---: |
| Siemens | |

Fig. 2-1 Removing Front Covers

Fig. 2-2
Power Terminals

2.3 Control terminals

2.4 Block diagram

Fig. 2-3 Inverter block diagram

$3 \quad$ Factory setting

The MICROMASTER 420 frequency inverter is set in the factory so that it can be operated without any additional parameterization. To do this, the motor parameters set in the factory (P0304, P0305, P0307, P0310), that correspond to a 4-pole 1LA7 Siemens motor, must match the rated data of the connected motor (refer to the rating plate).
Further factory setting:
$>$ Command sources P0700 $=2$ (Digital input, see Fig. 3-1)
> Setpoint source
P1000 $=2$ (Analog input, see Fig. 3-1)
> Motor cooling P0335 = 0
> Motor current limit P0640 = 150 \%
> Min. frequency P1080 $=0 \mathrm{~Hz}$
> Max. frequency P1082 = 50 Hz
> Ramp-up time $\mathrm{P} 1120=10 \mathrm{~s}$
> Ramp-down time $\mathrm{P} 1121=10 \mathrm{~s}$
> Control mode

Fig. 3-1 Analog and Digital Inputs P1300 = 0

| Input/Output | Terminals | Parameter | Function |
| :--- | :---: | :--- | :--- | :--- |
| Digital input 1 | 5 | P0701 $=1$ | ON / OFF1 \quad (I/O) |
| Digital input 2 | 6 | P0702 $=12$ | Reverse \quad ($\downarrow)$ |
| Digital input 3 | 7 | P0703 $=9$ | Fault reset (Ack) |
| Digital input | 8 | - | Power supply Digital input |
| Analog input | $3 / 4$ | P1000 $=2$ | Frequency setpoint |
| | $1 / 2$ | - | Power supply Analog input |
| Output relay | $10 / 11$ | P0731 $=52.3$ | Default identification |
| Analog output | $12 / 13$ | P0771 $=21$ | Output frequency |

3.1 50/60 Hz DIP switch

The default motor base frequency of the MICROMASTER inverter is 50 Hz . For motors, which are designed for a base frequency of 60 Hz , the inverters can be set to this frequency via a DIP switch.
$>$ Off position:
European defaults
($50 \mathrm{~Hz}, \mathrm{~kW}$ etc.)
> On position:
North American defaults ($60 \mathrm{~Hz}, \mathrm{hp}$ etc.)

4 Communications

4.1 Establishing communications MICROMASTER $420 \Leftrightarrow$ STARTER

The following optional components are additionally required in order to establish communications between STARTER and MICROMASTER 420:
> PC <-> frequency inverter connecting set
> BOP if the USS standard values (refer to Section 6.2.1 "Serial Interface (USS)") are changed in the MICROMASTER 420 frequency inverter

PC <-> frequency inverter connecting set	MICROMASTER 420
USS settings, refer to Section 6.2.1 "Serial	
Interface (USS)"	

4.2 Establishing communications between the MICROMASTER $420 \Leftrightarrow$ AOP

> Communications between AOP and MM420 are based on the USS protocol, analog to STARTER and MM420.
> Contrary to the BOP, the appropriate communication parameters - both for the MM420 as well as for AOP - should be set if the automatic interface detection was not carried-out (refer to Table 4-1).
> Using the optional components, the AOP can be connected to the communication interfaces (refer to Table 4-1).

Table 4-1

	AOP at the BOP link	AOP at the COM link
MM420 parameters - baud rate - bus address	P2010[1]	P2010[0]
AOP parameters	-	P2011
- baud rate		
- bus address	P8553	P8553
Options - direct connection - indirect connection	-	P8552

AOP as control unit

* A fault can be acknowledged via the AOP independently of P0700 or P1000.

4.3 Bus interface (CB)

5
 BOP / AOP (Option)

5.1 Buttons and their Functions

Panel/ Button	Function	Effects
${ }^{417}$	Indicates Status	The LCD displays the settings currently used by the converter.
	Start converter	Pressing the button starts the converter. This button is disabled by default. Activate the button: BOP: P0700=1 or P0719=10 ... 16 AOP: P0700 = 4 or P0719 = $40 \ldots 46$ on BOP link $\mathrm{P} 0700=5$ or P0719 = $\mathbf{5 0} \ldots 56 \quad$ on COM link
	Stop converter	OFF1 Pressing the button causes the motor to come to a standstill at the selected ramp down rate. Activate the button: see button "Start converter" OFF2 Pressing the button twice (or once long) causes the motor to coast to a standstill. BOP: This function is always enabled (independent of P0700 or P0719).
	Change direction	Press this button to change the direction of rotation of the motor. Reverse is indicated by a minus (-) sign or a flashing decimal point. Disabled by default. Activate the button: see button "Start converter".
	Jog motor	In the "Ready to power-on" state, when this key is pressed, the motor starts and rotates with the pre-set jog frequency. The motor stops when the button is released. Pressing this button when the motor is running has no effect.
	Functions	This button can be used to view additional information. It works by pressing and holding the button. It shows the following, starting from any parameter during operation: 1. DC link voltage (indicated by $\mathrm{d}-$ units V). 2. output current. (A) 3. output frequency (Hz) 4. output voltage (indicated by o-units V). 5. The value selected in P0005 (If P0005 is set to show any of the above (1-4) then this will not be shown again). Additional presses will toggle around the above displays. Jump Function From any parameter (rxxxx or Pxxxx) a short press of the Fn button will immediately jump to r0000, you can then change another parameter, if required. Upon returning to r0000, pressing the Fn button will return you to your starting point. Acknowledgement If alarm and fault messages are present, then these can be acknowledged by pressing key Fn.
	Access parameters	Pressing this button allows access to the parameters.
	Increase value	Pressing this button increases the displayed value.
	Decrease value	Pressing this button decreases the displayed value.
	AOP menu	Calls the AOP menu prompting (this is only available for AOP).

5.2 Changing parameters using as an example P0003 "Access level"

Step		Result on display
1	Press \boldsymbol{P} to access parameters	r0000
2	Press \boldsymbol{Q} until P0003 is displayed	P 0003
3	Press \boldsymbol{P} to access the parameter value level	1
4	Press \boldsymbol{Q} or to the required value (example: 3)	$\mathbf{3}$
5	Press \boldsymbol{P} to confirm and store the value	P 0003
6	Now access level 3 is set and all level 1 to level 3 parameters are visible to the user.	

6 Commissioning

6.1 Quick commissioning

The frequency inverter is adapted to the motor using the quick commissioning function and important technological parameters are set. The quick commissioning shouldn't be carried-out if the rated motor data saved in the frequency inverter (4-pole 1LA Siemens motor, star circuit configuration $\widehat{=}$ frequency inverter (FU)specific) match the rating plate data.
Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

Control mode (enters the required control mode)	
0 V/f with linear characteristic	
1 V/f with FCC	
2 V/f with parabolic characteristic	
$3 \mathrm{~V} / \mathrm{f}$ with programmable characteristic	
End of quick commissioning	0
(start of the motor calculation)	
0 No quick commissioning (no motor calculations)	
1 Start quick commissioning with factory reset	
2 Start quick commissioning	
3 Start quick commissioning o	
NOTE	
For P3900 $=1,2,3 \rightarrow \mathrm{P} 0340$ is internally set to 1 and the appropriate data calculated (refer to the parameter list P0340).	
End of quick commissioning/ drive setting	
If additional functions must be implemented at the drive inverter, use the following	
Section "Commissioning the application". We recommend this procedure for drives with a high dynamic response.	

6.2 Commissioning the application

An application is commissioned to adapt/optimize the frequency inverter - motor combination to the particular application. The frequency inverter offers numerous functions - but not all of these are required for the particular application. These functions can be skipped when commissioning the application. A large proportion of the possible functions are described here; refer to the parameter list for additional functions.

Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

6.2.1 Serial Interface (USS)

6.2.2 Selection of command source

6.2.3 Digital input (DIN)

6.2.4 Digital output (DOUT)

P0731 =...	BI: Function of digital output 1* 52.3 Defines source of digital output 1.		Common Settings:		
			52.0 Drive ready 52.1 Drive ready to run	0	Closed Closed
P0748 = 0	Invert digital output Defines high and low states of relay for a given function.		52.2 Drive running	0	Closed
			52.3 Drive fault active	0	Closed
			52.4 OFF2 active	1	Closed
			52.5 OFF3 active	1	Closed
			52.6 Switch on inhibit active	0	Closed
			52.7 Drive warning active	0	Closed

6.2.5 Selection of frequency setpoint

6.2.6 Analog input (ADC)

6.2.7 Analog output (DAC)

6.2 .8	Motor potentiometer (MOP)				
P1031 =...	Setpoint memory of the MOP Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down. 0 MOP setpoint will not be stored 1 MOP setpoint will be stored (P1040 is updated)				
P1032 =...	Inhibit negative MOP setpoints 0 Neg. MOP setpoint is allowed 1 Neg. MOP setpoint inhibited				
P1040 =...	Setpoint of the MOP Determines setpoint for motor potentiometer control.				
	MOP ramp-up and ramp-down times are defined by the parameters P1120 and P1121.				
	Possible parameter settings for the selection of MOP:				
		Selection	MOP up	MOP down	
	DIN	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=2, \mathrm{P} 1000=1 \\ \text { or } \mathrm{P} 0719=1, \mathrm{P} 0700=2 \end{gathered}$	$\begin{aligned} & \mathrm{P} 0702=13 \\ & \text { (DIN2) } \end{aligned}$	$\begin{aligned} & \text { P0703 = } 14 \\ & \text { (DIN3) } \end{aligned}$	
	BOP	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=1, \mathrm{P} 1000=1 \\ \text { or }=11 \end{gathered}$	UP button	DOWN button	
	USS on BOP link	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=4, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=41 \end{gathered}$	USS control word r2032 Bit13	USS control word r2032 Bit14	
	USS on COM link	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=5, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=51 \end{gathered}$	USS control word r2036 Bit13	USS control word r2036 Bit14	
	CB	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=6, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=61 \end{gathered}$	CB control word r2090 Bit13	CB control word r2090 Bit14	

6.2.9 Fixed frequency (FF)

6.2.10 JOG

6.2.11 Ramp-function generator (HLG)

6.2.12 Referencellimit frequencies

6.2.13 Motor control (V/f)

 frequency is defined.

V/f with linear
V/f with FCC
V/f with parabolic characteristic flux.

Acceleration boost (entered in \%) accelerates or brakes.

Control mode	0
The control type is selected using this parameter. For the "V/f characteristic" control type,	

V/f with programmable characteristic $(\rightarrow \mathrm{P} 1320-\mathrm{P} 1325)$

| Continuous boost (entered in \%) | 50.00% |
| :--- | :--- | Voltage boost as a \% relative to P0305 (rated motor current) and P0350 (stator resistance). P1310 is valid for all V/f versions (refer to P1300). At low output frequencies, the effective resistance values of the winding can no longer be neglected in order to maintain the motor

0.0 \%

Voltage boost for accelerating/braking as a \% relative to P0305 and P0350. P1311 only results in a voltage boost when ramping-up/ramp-down and generates an additional torque for accelerating/braking. Contrary to parameter P1312, that is only active for the $1^{\text {st }}$ acceleration operation after the ON command, P1311 is effective each time that the drive

6.2.14 Inverter/motor protection

	Inverter overload reaction Selects reaction of inverter to an internal over-temperature. 0 Reduce output frequency 1 Trip (F0004) 2 Reduce pulse frequency and output frequency 3 Reduce pulse frequency then trip (F0004)
P0292 =...	Inverter temperature warning $15^{\circ} \mathrm{C}$ Defines the temperature difference (in ${ }^{\circ} \mathrm{C}$) between the Overtemperature trip threshold and the warning threshold of the inverter. The trip threshold is stored internally by the inverter and cannot be changed by the user.
$\stackrel{\downarrow}{\text { P0335 }}$ =...	$\begin{array}{\|cc\|} \hline \text { Motor cooling (enters the motor cooling system) } \\ 0 & \text { Self-cooled: Using shaft mounted fan attached to motor } \\ 1 & \text { Force-cooled: Using separately powered cooling fan } \end{array}$
P0610 =...	
P0611 =...	Motor $I^{2} t$ time constant (entered in s) The time until the thermal limit of a motor is reached, is calculated via the thermal time constant. A higher value increases the time at which the motor thermal limit is reached. The value of P0611 is estimated according to the motor data during quick commissioning or is calculated using P0340 (Calculating of the motor parameters). When the calculation of motor parameters during quick commission is complete the stored value can be replaced by the value given by the motor manufacturer
$\stackrel{\downarrow}{\text { P0614 }}$ =...	Motor I^{2} t warning level (entered in \%) Defines the value at which alarm A0511 (motor overtemperature) is generated. 100.0%
P0640 =...	Motor overload factor [\%] Defines motor overload current limit in [\%] relative to P0305 (rated motor current). Limited to maximum inverter current or to 400% of rated motor current (P0305), whichever is the lower.

6.2.15 Inverter-specific Functions

6.2.15.1 Flying start

P1200	Flying start Starts inverter onto a spinning motor by rapidly changing the output frequency of the inverter until the actual motor speed has been found. 0 Flying start disabled 1 Flying start is always active, start in direction of setpoint 2 Flying start is active if power on, fault, OFF2, start in direction of setpoint 3 Flying start is active if fault, OFF2, start in direction of setpoint 4 Flying start is always active, only in direction of setpoint 5 Flying start is active if power on, fault, OFF2, only in direction of setpoint 6 Flying start is active if fault, OFF2, only in direction of setpoint	0
P1202 =..	Motor-current: Flying start (entered in \%) Defines search current used for flying start.	100%
	Search rate: Flying start (entered in \%) Sets factor by which the output frequency changes during flying start to synchronize with turning motor.	

6.2.15.2 Automatic restart

Automatic restart	0
Configures automatic restart function.	
0	Disabled
1	Trip reset after power on
2	Restart after mains blackout
3	Restart after mains brownout or fault
4	Restart after mains brownout
5	Restart after mains blackout and fault
6	Restart after mains brown/blackout or fault

6.2.15.3 Holding brake

Holding brake enable
0
Enables/disables holding brake function (MHB).
0 Motor holding brake disabled
1 Motor holding brake enabled
NOTE
The following must apply when controlling the brake relay via a digital output: P0731 = 52.12 (= 52.C) (refer to Section 6.2.4 "Digital ").
 Defines the time interval during which the frequency inverter runs with the min. frequency P1080 after magnetizing, before the ramp-up starts.

Holding time after ramp-down (entered in s)	1.0 s

Defines time for which inverter runs at minimum frequency (P1080) after ramping down.

6.2.15.4 DC braking

DC braking current (entered in \%) Defines level of DC current in [\%] relative to rated motor current (P0305).	100%
Duration of DC braking (entered in s) Defines duration for which DC injection braking is to be active following an OFF1 or OFF3 command.	0 s

6.2.15.5 Compound braking

P1236 =...

Compound braking current (entered in \%)

Defines DC level superimposed on AC waveform after exceeding DC-link voltage threshold of compound braking. The value is entered in [\%] relative to rated motor current (P0305). (see also 6.2.15.6).
If P1254 = 0 :
Compound braking switch-on level $\quad U_{\text {DC_Comp }}=1.13 \cdot \sqrt{2} \cdot V_{\text {mains }}=1.13 \cdot \sqrt{2} \cdot$ P0210
otherwise :
Compound braking switch-on level $\quad \mathrm{U}_{\mathrm{DC} _ \text {Comp }}=0.98 \cdot \mathrm{r} 1242$

6.2.15.6 Vdc controller

6.2.15.7 PID controller

| BI: Enable PID controller | 0.0 |
| :--- | :--- | :--- |
| PID mode Allows user to enable/disable the PID controller. Setting to 1 enables the PID | | controller. Setting 1 automatically disables normal ramp times set in P1120 and P1121 and the normal frequency setpoints.

CI: PID setpoint	0.0

Defines setpoint source for PID setpoint input.
CI: PID trim source 0.0
Selects trim source for PID setpoint. This signal is multiplied by the trim gain and added to the PID setpoint.

Ramp-up time for PID setpoint Sets the ramp-up time for the PID setpoint.	1.00 s
Ramp-down time for PID setpoint	1.00 s

Sets ramp-down time for PID setpoint.	
CI: PID feedback	755.0

Selects the source of the PID feedback signal.

Max. value for PID feedback	100.00%

Sets the upper limit for the value of the feedback signal in [\%]..

Min. value for PID feedback Sets lower limit for value of feedback signal in [\%]..	0.00%
PID proportional gain	3.000

Allows user to set proportional gain for PID controller.

PID integral time	0.000 s
Sets integral time constant for PID controller.	
PID output upper limit	100.00%

Sets upper limit for PID controller output in [\%].
PID output lower limit
Sets lower limit for the PID controller output in [\%].

Example:

Parameter	Parameter text	Example	
P2200	BI: Enable PID controller	P2200 $=1.0$	PID controller active
P2253	CI: PID setpoint	P2253 $=2224$	PID-FF1
P2264	CI: PID feedback	P2264 $=755$	ADC
P2267	Max. PID feedback	P2267	Adapt to the application
P2268	Min. PID feedback	P2268	Adapt to the application
P2280	PID proportional gain	P2280	Determined by optimizing
P2285	PID integral time	P2285	Determined by optimizing
P2291	PID output upper limit	P2291	Adapt to the application
P2292	PID output lower limit	P2292	Adapt to the application

6.3 Series commissioning

An existing parameter set can be transferred to a MICROMASTER 420 frequency inverter using STARTER or DriveMonitor (refer to Section 4.1 "Establishing communications MICROMASTER $420 \Leftrightarrow$ STARTER").

Typical applications for series commissioning include:

1. If several drives are to be commissioned that have the same configuration and same functions. A quick / application commissioning (first commissioning) must be carried-out for the first drive. Its parameter values are then transferred to the other drives.
2. When replacing MICROMASTER 420 frequency inverters.

6.4 Parameter reset of factory setting

Commissioning parameter 30 Factory setting	
Factory reset	0
0 disabled	
1 Parameter reset	
The drive inverter carries-out a parameter reset (duration, approx. 10 s) and then automatically exits the reset menu and sets:	
P0970 $=0$: disabled	
P0010 = 0: ready	

7 Displays and messages

7．1 LED status display

－	Mains not present	第	Fault inverter temperature
箖	Ready to run	（0）	Warning current limit both LEDs twinkling same time
－	Inverter fault other than the ones listed below	（0）	Other warnings both LEDs twinkling alternatively
＊	Inverter running	${ }_{0}^{\circ}$	Undervoltage trip／undervoltage warning
－	Fault overcurrent	¢	Drive is not in ready state
－	Fault overvoltage	$\stackrel{\odot}{\odot}$	ROM failure both LEDs flashing same time
迷	Fault motor overtemperature	$\stackrel{\ominus}{\ominus}$	RAM failure both LEDs flashing alternatively

7．2 Fault messages and Alarm messages

Fault	Significance
F0001	Overcurrent
F0002	Overvoltage
F0003	Undervoltage
F0004	Inverter Overtemperature
F0005	Inverter I ${ }^{2}$ t
F0011	Motor Overtemperature I ${ }^{2}$ t
F0041	Stator resistance measurement failure
F0051	Parameter EEPROM Fault
F0052	Powerstack Fault
F0060	Asic Timeout
F0070	Communications board setpoint error
F0071	No Data for USS（RS232 link）during Telegram Off Time
F0072	No Data from USS（RS485 link） during Telegram Off Time
F0080	Analogue input－lost input signal
F0085	External Fault
F0101	Stack Overflow
F0221	PI Feedback below minimum value
F0222	PI Feedback above maximum value
F0450	BIST Tests Failure （Service mode only）

Alarms	Significance
A0501	Current Limit
A0502	Overvoltage limit
A0503	Undervoltage Limit
A0504	Inverter Overtemperature
A0505	Inverter I ${ }^{2}$ t
A0506	Inverter Duty Cycle
A0511	Motor Overtemperature I ${ }^{2}$ t
A0541	Motor Data Identification Active
A0600	RTOS Overrun Warning
A0700 A0709	CB warning
A0710	CB communication error
A0711	CB configuration error
A0910	Vdc－max controller de－activated
A0911	Vdc－max controller active
A0920	ADC parameters not set properly
A0921	DAC parameters not set properly
A0922	No load applied to inverter
A0923	Both JOG Left and JOG Right are requested

Information about MICROMASTER 420 is also available from:

Regional Contacts

Please get in touch with your contact for Technical Support in your Region for questions about services, prices and conditions of Technical Support.

Central Technical Support

The competent consulting service for technical issues with a broad range of requirementsbased services around our products and systems.

Europe I Africa

Tel: \quad +49 (0) 1805050222
Fax: $\quad+49$ (0) 1805050223
Email: adsupport@siemens.com

America

Tel: $\quad+14232622522$
Fax: $\quad+14232622589$
Email: simatic.hotline@sea.siemens.com
Asia / Pacific
Tel: $\quad+861064757575$
Fax: $\quad+861064747474$
Email: adsupport.asia@siemens.com

Online Service \& Support

The comprehensive, generally available information system over the Internet, from product support to service \& support to the support tools in the shop.
http://www.siemens.com/automation/service\&support

Internet Address

Customers can access technical and general information under the following address: http://www.siemens.com/micromaster

