Brain hackers/bib/neuromodulation

From London Hackspace Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

J. J. Anders, “The potential of light therapy for central nervous system injury and disease,” Photomed. Laser Surg. 27(3), 379–380 (2009).

Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stim 2011;4(2):84–9.

D. W. BARRETT AND F. GONZALEZ-LIMA. TRANSCRANIAL INFRARED LASER STIMULATION PRODUCES BENEFICIAL COGNITIVE AND EMOTIONAL EFFECTS IN HUMANS. Neuroscience 230 (2013) 13–23

Archy O. de Berker, Marom Bikson and Sven Bestmann. Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations.

Brian A Coffman et al. Enhancement of object detection with transcranial direct current stimulation is associated with increased attention BMC Neuroscience 2012, 13:108 Frontiers in Human Neuroscience. October 2013 | Volume7 | Article 613

Joaquim P. Brasil-Neto Learning, Memory, and Transcranial Direct Current Stimulation. Front Psychiatry. 2012; 3: 80.

Leila Chaieb, Walter Paulus, and Andrea Antal, Evaluating Aftereffects of Short-Duration Transcranial Random Noise Stimulation on Cortical Excitability, Neural Plasticity, vol. 2011, Article ID 105927, 5 pages, 2011.

Richard P. Chi, Allan W. Snyder. Facilitate Insight by Non-Invasive Brain Stimulation. PLoS ONE. February 2011, Volume 6, Issue 2

H. Chung et al., The nuts and bolts of low-level laser (light) therapy, Ann. Biomed. Eng. 40(2), 516–533 (2012).

Creutzfeldt, O. D., Fromm, G. H., & Kapp, H. (1962). Influence of transcortical DC currents on cortical neuronal activity. Experimental Neurology, 5, 436-452.

Day, B. L. (1999). Galvanic vestibular stimulation: new uses for an old tool. Journal of Physiology, 517, 631.

Dockery, C.A., Hueckel-Weng, R., Birbaumer, N., and Plewnia, C. (2009). Enhancement of planning ability by transcranial direct current stimulation. J. Neurosci. 29, 7271–7277.

Francis JT, Gluckman BJ & Schiff SJ (2003). Sensitivity of neurons to weak electric fields. J Neuroscience 23, 7255–7261.

Fregni, F., P. S. Boggio, et al. (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research 166(1): 23-30.

Brita Fritsch et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron. 2010 April 29; 66(2): 198–204.

C Gabriel, S Gabriely and E Corthout. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41 (1996) 2231–2249

Ilic S, Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U: Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomed Laser Surg 2006, 24:458-466.

Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu J, Aronen HJ, Naatanen R and Katila T. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 1997;8:3537-3540.

Grafman, J., & Wassermann, E. (1999). Transcranial magnetic stimulation can measure and modulate learning and memory. Neuropsychologia, 37, 159-167.

Jenrow KA, Zhang X, Renehan WE and Liboff AR. Weak ELF magnetic field effects on hippocampal rhythmic slow activity. Exp Neurol 1998;153:328-334.

Hashmi, J.T., et al., Effect of pulsing in low-level light therapy. Lasers Surg Med, 2010. 42(6): p. 450-66.

K. M. Hebeda et al., “Light propagation in the brain depends on nerve fiber orientation,” Neurosurgery 35(4), 720–722 (1994).

Y. Y. Huang et al., “Biphasic dose response in low level light therapy,” Dose Response 7(4), 358–383 (2009).

Y. Y. Huang et al., “Biphasic dose response in low level light therapy— an update,” Dose Response 9(4), 602–618 (2011).

Cohen Kadosh, R., Levy, N., O’Shea, J., Shea, N., and Savulescu, J. (2012). The neuroethics of non-invasive brain stimulation. Curr. Biol. 22, R108–R111.

Cohen Kadosh, R., The Stimulated Brain: Cognitive Enhancement Using Non-Invasive Brain Stimulation. Academic Press Inc (16 Jun 2014) - a must have book!

Karim, A. A. (2010). Transcranial cortex stimulation as a novel approach for probing the neurobiology of dreams: Clini­cal and neuroethical implications. International Journal of Dream Research, 3, 15-18.

Karim, A. A., Schneider, M., Lotze, M., Veit, R., Sauseng, P., Braun, C., & Birbaumer, N. (2010). The truth about lying: Inhibition of the anterior prefrontal cortex improves de­ceptive behavior. Cerebral Cortex, 20, 205-213.

Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005;23(4):355 – 61.

A. Kienle, F. K. Forster, and R. Hibst, “Anisotropy of light propagation in biological tissue,” Opt. Lett. 29(22), 2617–2619 (2004).

A. Kienle and R. Hibst, “Light guiding in biological tissue due to scattering,” Phys. Rev. Lett. 97(1), 018104 (2006).

King RL, Brown JR, Newsome WT, Pauly KB. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound in Med. & Biol., Ultrasound Med Biol. 2013 Feb;39(2):312-31.

Randy L. King, Julian R. Brown, Kim Butts Pauly. Localization of Ultrasound-Induced In Vivo Neurostimulation in the Mouse Model. Ultrasound in Medicine and Biology. Volume 40, Issue 7 , Pages 1512-1522, July 2014

Kluger, MD,, Benzi M. and William J. Triggs, MD. Use of Transcranial Magnetic Stimulation to Influence Behavior. Current Neurology and Neuroscience Reports 2007, 7:491–497

Min-Fang Kuo and Michael A. Nitsche. Effects of Transcranial Electrical Stimulation on Cognition. Clin EEG Neurosci 2012 43: 192.

Larson J, Wong D, Lynch G: Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long term potentiation. Brain Res 1986, 368:347-350.

Liebetanz, D., Nitsche, M. A., Tergau, F., & Paulus, W. (2002). Pharmacological approach to the mechanisms of tran­scranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain, 125, 2238-2247.

Teresa Iuculano and Roi Cohen Kadosh. The Mental Cost of Cognitive Enhancement. The Journal of Neuroscience, March 6, 2013 • 33(10):4482– 4486

A.A. Marino, E. Nilson, A.L. Chesson, C. Frilot, Effect of low frequency magnetic fields on brain electrical activity in human subjects, Clin. Neurophysiol. 115 (2004) 1195–1201.

Marshall, L., Mölle, M., Hallschmid, M., & Born, J. (2004). Tran­scranial direct current stimulation during sleep improves declarative memory. Journal of Neuroscience, 24, 9985-9992.

Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boost­ing slow oscillations during sleep potentiates memory. Nature, 444, 610-613.

Marshall, L., et al. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. PNAS, September 8, 2009, vol. 106, no. 36.

McCarthy, T.J., De Taboada, L., Hildebrandt, P.K., Ziemer, E.L., Richieri, S.P., and Streeter, J. (2010). Long-term safety of single and multiple infrared transcranial laser treatments in Sprague-Dawley rats. Photomed. Laser Surg. 28, 663–667

Michalikova S, Ennaceur A, Rensburg Rv, Chazot P: Emotional responses and memory performance of middle-aged CD1 mice in a 3D maze: Effects of low infrared light. Neurobiol Learn Mem 2007, 187:312-326.

Bryce P. Mulligan, Michael A. Persinger. Experimental simulation of the effects of sudden increases in geomagnetic activity upon quantitative measures of human brain activity: Validation of correlational studies. Neuroscience Letters 516 (2012) 54– 56

Naeser, M.A., et al., Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg, 2011. 29(5): p. 351-8.

Nitsche M A, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects. Suppl Clin Neurophysiol 2003;56:255–76.

Nitsche, M. A., Liebetanz, D., Lang, N., Antal, A., Tergau, F. & Paulus, W. (2003). Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clinical Neuro­physiology, 114, 2220-2222.

Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol 2005;568:291–303.

Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, Henning S, Tergau F, Paulus W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol 2003b;553:293–301

Nitsche MA et al. Consolidation of Human Motor Cortical Neuroplasticity by D-Cycloserine. Neuropsycho-pharmacology (2004) 29, 1573–1578

Nitsche, M. A. and Stagg C. J. Physiological Basis of Transcranial Direct Current Stimulation. The Neuroscientist 17(1) 37–53, 2011.

Thomas Nyffeler et al. Extending lifetime of plastic changes in the human brain. European Journal of Neuroscience, Vol. 24, pp. 2961–2966, 2006

Lang, N, Nitsche MA, Paulus W, Rothwell JC, Lemon RN. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain Res 2004;156:439–43.

Matsunaga K, Nitsche MA, Tsuji S, Rothwell J. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol 2004;115:456–60.

Fregni F, Boggio PS, Nitsche MA, Bermpohl F, Antal A, Feredoes E, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res 2005;166:23–30.

Frank S. Prato et al. Magnetoreception in laboratory mice: sensitivity to extremely low-frequency fields exceeds 33 nT at 30 Hz. J. R. Soc. Interface 2013 10, 20121046

Purpura, D. P., & McMurtry, J. G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology, 28, 166-185.

Valdas Noreika, Jennifer M. Windt, Bigna Lenggenhager, & Ahmed A. Karim. New perspectives for the study of lucid dreaming: From brain stimulation to philosophical theories of self-consciousness. International Journal of Dream Research Volume 3, No. 1 (2010)

Michael A. Persinger, Kevin S. Saroka. Minimum Attenuation of Physiologically-Patterned, 1 μTesla Magnetic Fields through Simulated Skull and Cerebral Space. Journal of Electromagnetic Analysis and Applications, 2013, 5, 151-156.

Rojas JC, Bruchey AK and Gonzaez-Lima (2012). “Low-Level Light Therapy Improves Cortical Metabolic Capacity and Memory Retention. J Alzheimers Dis. 32(3): 741-52.

Julio C. Rojas and F. Gonzalez-Lima. Neurological and psychological applications of transcranial lasers and LEDs. Biochemical Pharmacology 86 (2013) 447–457

Frank S.Prato et al. The Detection Threshold for Extremely Low Frequency Magnetic Fields May Be Below 1000 nT-Hz in Mice. Bioelectromagnetics 32:561-569(2011)

N. Salansky, A. Fedotchev, A. Bondar, Responses of the nervous system to low frequency stimulation and EEG rhythms: clinical implications, Neurosci. Biobehav. Rev. 22 (1998) 395–409.

REUVEN SANDYK and KYRIAKOS DERPAPAS. THE EFFECTS OF EXTERNAL PICOTESLA RANGE MAGNETIC FIELDS ON THE EEG IN PARKINSON’S DISEASE.

REUVEN SANDYK and KYRIAKOS DERPAPAS. FURTHER OBSERVATIONS ON THE UNIQUE EFFICACY OF PICOTESLA RANGE MAGNETIC FIELDS IN PARKINSON'S DISEASE. Intern. J. Neuroscience, 1993, Vol. 69, pp. 167-183

Sanja Ilic et al. Effects of Power Densities, Continuous and Pulse Frequencies, and Number of Sessions of Low-Level Laser Therapy on Intact Rat Brain. Photomedicine and Laser Surgery Volume 24, Number 4, 2006

Salman Shahid, PengWen, and Tony Ahfock. Assessment of Electric Field Distribution in Anisotropic Corticaland Subcortical Regions Under the Influence of tDCS. Bioelectromagnetics 35:41-57 (2014)

Simal Ozen et al. Transcranial Electric Stimulation Entrains Cortical Neuronal Populations in Rats. The Journal of Neuroscience, August 25, 2010 • 30(34):11476 –11485

E. V. Sharova et al. Changes in Spontaneous Brain Bioelectrical Activity During Transcranial Electrical and Electromagnetic Stimulation. Neuroscience and Behavioral Physiology, Vol. 37, No. 5, 2007

Albert Snowball et al. Long-Term Enhancement of Brain Function and Cognition Using Cognitive Training and Brain Stimulation. Current Biology 23, 987–992, June 3, 2013.

Sulbha K. Sharma et al. Dose Response Effects of 810 nm Laser Light on Mouse Primary Cortical Neurons. Lasers in Surgery and Medicine 43:851–859 (2011)

Snyder, A. W., E. Mulcahy, et al. (2003). "Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe." J. Integr Neurosci. 2(2): 149-58.

Snyder A (2009) Explaining and inducing savant skills: privileged access to lower level, less-processed information. Philos Trans R Soc B: Biol Sci 364: 1399–1405.

Snyder A, Bahramali H, Hawker T, Mitchell DJ (2006) Savant-like numerosity skills revealed in normal people by magnetic pulses. Percepion 35: 837–845.

Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency Random Noise Stimulation. J. Neurosci 2008;28(52):14147–55.

Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, et al. (2008) Remote Excitation of Neuronal Circuits Using Low-Intensity, Low-Frequency Ultrasound. PLoS ONE 3(10): e3511.

Tyler WJ et al. Transcranial Pulsed Ultrasound Stimulates Intact Brain Circuits. Neuron 66, 681–694, June 10, 2010

Uozumi Y, Nawashiro H, Sato S, Kawauchi S, Shima K, Kikuchi M (2010). “Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation”. Lasers Surg Med. 42(6):566–576.

Kathrin S. Utz et al. Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—A review of current data and future implications. Neuropsychologia 48 (2010) 2789–2810

Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng 2007;9:527–65.

Wagner T, Fregni F, Fecteau S, Grodzinsky A, Zahn M, Pascual-Leone A. Transcranial direct current stimulation: a computer-based human model study. Neuroimage 2007;35:1113–1124.

Wassermann EM, Grafman J. Recharging cognition with DC brain polarization. Trends Cogn Sci 2005;9:503–505.

Wong-Riley, M. T., Liang, H. L., Eells, J. T., Chance, B., Henry, M. M., Buchmann, E., Kane, M., and Whelan, H. T., Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: role of cytochrome c oxidase, J Biol Chem. 280, 4761-4771 (2005)

X.Wu et al., “Pulsed light irradiation improves behavioral outcome in a rat model of chronic mild stress,” Lasers Surg. Med. 44(3), 227–232 (2012).

Tino Zaehle, Stefan Rach, Christoph S. Herrmann. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS ONE November 2010, Volume 5, Issue 11.

Zaghloul Ahmed and Andrzej Wieraszko. The Influence of Pulsed Magnetic Fields (PMFs) on Nonsynaptic Potentials Recorded From the Central and Peripheral Nervous Systems In Vitro. Bioelectromagnetics 30:621^630 (2009)