Project:Nanode/Applications/Bootstrap config files

From London Hackspace Wiki
Jump to navigation Jump to search

Files modified in USBaspLoader.2010-07-2 (yes, they should be in github. I'll get onto it dreckly.)

Notes & warnings

Don't use the 'make fuse' part. The default fuses used by the serial bootloader are fine and these don't make sense with the datasheet. Just use 'make main.hex', or set up the PROGRAMMER macro and use 'make flash'. I haven't tried to add this build to the ALLHEXFILES target and it probably makes no sense to do so, as the changes I made to usbconfig.h won't generate valid output for the other targets.

This loader needs more work. At present, it :

  • Doesn't do anything with the LED to indicate it's working
  • Needs to be put into loader mode by grounding DIG7 and pushing the reset button
  • Will go straight from programming into running, but needs DIG7 ungrounding before the next reset
  • OSX users have noted that they have to hold the reset button down briefly when plugging the nanode into the usb port for it to be recognised. The timing of this can be quite tricky and it's best to run `tail -f /var/log/kernel.log` to confirm successful enumeration of the usb device. Once connected the nanode can be programmed again by using reset to start to bootloader again (with DIG7 still connected to ground).

Howto

So, to run dmi's dhcp webserver after installing this loader, you need to :

  • In Linux, modify the udev rules so you can use usblib without being root
  • add the arduino board description to {arduino root}/hardware/arduino/boards.txt
  • load the sketch
  • select the nanode target board
  • link DIG7 to ground with a wire
  • reset the board
  • upload the sketch

The code will then start running, but you probably need to see the serial output. To do this :

  • connect FTDI cable to serial port, but DO NOT connect the 5V line, or you'll backdrive the USB port
  • open serial monitor
  • remove the DIG7 link (or the reset will enter the loader again)
  • reset the board (because the interesting stuff has already been printed)

What next?

This can probably all be improved. Suggestions as to how to do it without using a lot more port pins or hardware changes to the nanode board are welcome (currently, I'm thinking some sort of timeout after reset. The stock arduino loader uses the watchdog to reboot once it's determined that loading isn't going to happen).

Useful links

Config files


# Name: Makefile
# Project: USBaspLoader
# Author: Christian Starkjohann
# Creation Date: 2007-12-10
# Tabsize: 4
# Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
# License: GNU GPL v2 (see License.txt)
# This Revision: $Id: Makefile 798 2010-07-27 17:29:28Z cs $

###############################################################################
# Configure the following variables according to your AVR.
# Program the device with
#     make fuse    # to set the clock generator, boot section size etc.
#     make flash   # to load the boot loader into flash
#     make lock    # to protect the boot loader from overwriting

F_CPU = 16000000
DEVICE = atmega328p
# BOOTLOADER_ADDRESS is 1800 for 8k devices, 3800 for 16k and 7800 for 32k.
BOOTLOADER_ADDRESS = 7800
FUSEOPT = $(FUSEOPT_328)
LOCKOPT = -U lock:w:0x2f:m

# PROGRAMMER = -c buspirate -P /dev/ttyUSB1 -e
PROGRAMMER = -c buspirate -P /dev/ttyUSB1 
# PROGRAMMER contains AVRDUDE options to address your programmer

FUSEOPT_8 = -U hfuse:w:0xc0:m -U lfuse:w:0x9f:m
FUSEOPT_88 = -U hfuse:w:0xd6:m -U lfuse:w:0xdf:m -U efuse:w:0x00:m
FUSEOPT_168 = -U hfuse:w:0xd6:m -U lfuse:w:0xdf:m -U efuse:w:0x00:m
#FUSEOPT_328 = -U lfuse:w:0xf7:m -U hfuse:w:0xda:m -U efuse:w:0x03:m
FUSEOPT_328 = -U lfuse:w:0xf7:m -U hfuse:w:0xda:m -U efuse:w:0x04:m
# You may have to change the order of these -U commands.

#---------------------------------------------------------------------
# ATMega8
#---------------------------------------------------------------------
# Fuse high byte:
# 0xc0 = 1 1 0 0   0 0 0 0 <-- BOOTRST (boot reset vector at 0x1800)
#        ^ ^ ^ ^   ^ ^ ^------ BOOTSZ0
#        | | | |   | +-------- BOOTSZ1
#        | | | |   + --------- EESAVE (preserve EEPROM over chip erase)
#        | | | +-------------- CKOPT (full output swing)
#        | | +---------------- SPIEN (allow serial programming)
#        | +------------------ WDTON (WDT not always on)
#        +-------------------- RSTDISBL (reset pin is enabled)
# Fuse low byte:
# 0x9f = 1 0 0 1   1 1 1 1
#        ^ ^ \ /   \--+--/
#        | |  |       +------- CKSEL 3..0 (external >8M crystal)
#        | |  +--------------- SUT 1..0 (crystal osc, BOD enabled)
#        | +------------------ BODEN (BrownOut Detector enabled)
#        +-------------------- BODLEVEL (2.7V)
#---------------------------------------------------------------------
# ATMega88, ATMega168
#---------------------------------------------------------------------
# Fuse extended byte:
# 0x00 = 0 0 0 0   0 0 0 0 <-- BOOTRST (boot reset vector at 0x1800)
#                    \+/
#                     +------- BOOTSZ (00 = 2k bytes)
# Fuse high byte:
# 0xd6 = 1 1 0 1   0 1 1 0
#        ^ ^ ^ ^   ^ \-+-/
#        | | | |   |   +------ BODLEVEL 0..2 (110 = 1.8 V)
#        | | | |   + --------- EESAVE (preserve EEPROM over chip erase)
#        | | | +-------------- WDTON (if 0: watchdog always on)
#        | | +---------------- SPIEN (allow serial programming)
#        | +------------------ DWEN (debug wire enable)
#        +-------------------- RSTDISBL (reset pin is enabled)
# Fuse low byte:
# 0xdf = 1 1 0 1   1 1 1 1
#        ^ ^ \ /   \--+--/
#        | |  |       +------- CKSEL 3..0 (external >8M crystal)
#        | |  +--------------- SUT 1..0 (crystal osc, BOD enabled)
#        | +------------------ CKOUT (if 0: Clock output enabled)
#        +-------------------- CKDIV8 (if 0: divide by 8)
#---------------------------------------------------------------------
# ATMega328P
#---------------------------------------------------------------------
# Fuse extended byte:
# 0x03 = - - - -   - 0 1 1
#                    \-+-/
#                      +------ BODLEVEL 0..2 (011 = 4.3V)
# Fuse high byte:
# 0xda = 1 1 0 1   1 0 1 0 <-- BOOTRST (0 = jump to bootloader at start)
#        ^ ^ ^ ^   ^ \+/
#        | | | |   |  +------- BOOTSZ 0..1 (01 = 2KB starting at 0x7800)
#        | | | |   + --------- EESAVE (don't preserve EEPROM over chip erase)
#        | | | +-------------- WDTON (1 = watchdog disabled at start)
#        | | +---------------- SPIEN (0 = allow serial programming)
#        | +------------------ DWEN (1 = debug wire disable)
#        +-------------------- RSTDISBL (1 = reset pin is enabled)
# Fuse low byte:
# 0xf7 = 1 1 1 1   0 1 1 1
#        ^ ^ \ /   \--+--/
#        | |  |       +------- CKSEL 3..0 (0111 = external full-swing crystal)
#        | |  +--------------- SUT 1..0 (11 = startup time 16K CK/14K + 65ms)
#        | +------------------ CKOUT (1 = clock output disabled)
#        +-------------------- CKDIV8 (1 = do not divide clock by 8)


###############################################################################

# Tools:
AVRDUDE = avrdude $(PROGRAMMER) -p $(DEVICE)
CC = avr-gcc

# Options:
DEFINES = -DUSE_AUTOCONFIG=1 #-DDEBUG_LEVEL=2
# Remove the -fno-* options when you use gcc 3, it does not understand them
CFLAGS = -Wall -Os -fno-move-loop-invariants -fno-tree-scev-cprop -fno-inline-small-functions -I. -mmcu=$(DEVICE) -DF_CPU=$(F_CPU) $(DEFINES)
LDFLAGS = -Wl,--relax,--gc-sections -Wl,--section-start=.text=$(BOOTLOADER_ADDRESS)

OBJECTS =  usbdrv/usbdrvasm.o usbdrv/oddebug.o main.o

# symbolic targets:
all: main.hex

.c.o:
	$(CC) $(CFLAGS) -c $< -o $@

.S.o:
	$(CC) $(CFLAGS) -x assembler-with-cpp -c $< -o $@
# "-x assembler-with-cpp" should not be necessary since this is the default
# file type for the .S (with capital S) extension. However, upper case
# characters are not always preserved on Windows. To ensure WinAVR
# compatibility define the file type manually.

.c.s:
	$(CC) $(CFLAGS) -S $< -o $@

flash:	all
	$(AVRDUDE) -U flash:w:main.hex:i

readflash:
	$(AVRDUDE) -U flash:r:read.hex:i

fuse:
	$(AVRDUDE) $(FUSEOPT)

lock:
	$(AVRDUDE) $(LOCKOPT)

read_fuses:
	$(UISP) --rd_fuses

clean:
	rm -f main.hex main.bin *.o usbdrv/*.o main.s usbdrv/oddebug.s usbdrv/usbdrv.s

# file targets:
main.bin:	$(OBJECTS)
	$(CC) $(CFLAGS) -o main.bin $(OBJECTS) $(LDFLAGS)

main.hex:	main.bin
	rm -f main.hex main.eep.hex
	avr-objcopy -j .text -j .data -O ihex main.bin main.hex
	avr-size main.hex

disasm:	main.bin
	avr-objdump -d main.bin

cpp:
	$(CC) $(CFLAGS) -E main.c

# Special rules for generating hex files for various devices and clock speeds
ALLHEXFILES = hexfiles/mega8_12mhz.hex hexfiles/mega8_15mhz.hex hexfiles/mega8_16mhz.hex \
	hexfiles/mega88_12mhz.hex hexfiles/mega88_15mhz.hex hexfiles/mega88_16mhz.hex hexfiles/mega88_20mhz.hex\
	hexfiles/mega168_12mhz.hex hexfiles/mega168_15mhz.hex hexfiles/mega168_16mhz.hex hexfiles/mega168_20mhz.hex\
	hexfiles/mega328p_12mhz.hex hexfiles/mega328p_15mhz.hex hexfiles/mega328p_16mhz.hex hexfiles/mega328p_20mhz.hex

allhexfiles: $(ALLHEXFILES)
	$(MAKE) clean
	avr-size hexfiles/*.hex

$(ALLHEXFILES):
	@[ -d hexfiles ] || mkdir hexfiles
	@device=`echo $@ | sed -e 's|.*/mega||g' -e 's|_.*||g'`; \
	clock=`echo $@ | sed -e 's|.*_||g' -e 's|mhz.*||g'`; \
	addr=`echo $$device | sed -e 's/\([0-9]\)8/\1/g' | awk '{printf("%x", ($$1 - 2) * 1024)}'`; \
	echo "### Make with F_CPU=$${clock}000000 DEVICE=atmega$$device BOOTLOADER_ADDRESS=$$addr"; \
	$(MAKE) clean; \
	$(MAKE) main.hex F_CPU=$${clock}000000 DEVICE=atmega$$device BOOTLOADER_ADDRESS=$$addr DEFINES=-DUSE_AUTOCONFIG=1
	mv main.hex $@



/* Name: bootloaderconfig.h
 * Project: USBaspLoader
 * Author: Christian Starkjohann
 * Creation Date: 2007-12-08
 * Tabsize: 4
 * Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
 * License: GNU GPL v2 (see License.txt)
 * This Revision: $Id: bootloaderconfig.h 729 2009-03-20 09:03:58Z cs $
 */

#ifndef __bootloaderconfig_h_included__
#define __bootloaderconfig_h_included__

/*
General Description:
This file (together with some settings in Makefile) configures the boot loader
according to the hardware.

This file contains (besides the hardware configuration normally found in
usbconfig.h) two functions or macros: bootLoaderInit() and
bootLoaderCondition(). Whether you implement them as macros or as static
inline functions is up to you, decide based on code size and convenience.

bootLoaderInit() is called as one of the first actions after reset. It should
be a minimum initialization of the hardware so that the boot loader condition
can be read. This will usually consist of activating a pull-up resistor for an
external jumper which selects boot loader mode.

bootLoaderCondition() is called immediately after initialization and in each
main loop iteration. If it returns TRUE, the boot loader will be active. If it
returns FALSE, the boot loader jumps to address 0 (the loaded application)
immediately.

For compatibility with Thomas Fischl's avrusbboot, we also support the macro
names BOOTLOADER_INIT and BOOTLOADER_CONDITION for this functionality. If
these macros are defined, the boot loader usees them.
*/

/* ---------------------------- Hardware Config ---------------------------- */

#define USB_CFG_IOPORTNAME      D
/* This is the port where the USB bus is connected. When you configure it to
 * "B", the registers PORTB, PINB and DDRB will be used.
 */
#define USB_CFG_DMINUS_BIT      4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
 * This may be any bit in the port.
 */
#define USB_CFG_DPLUS_BIT       3
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
 * This may be any bit in the port. Please note that D+ must also be connected
 * to interrupt pin INT0!
 */
#define USB_CFG_CLOCK_KHZ       (F_CPU/1000)
/* Clock rate of the AVR in MHz. Legal values are 12000, 16000 or 16500.
 * The 16.5 MHz version of the code requires no crystal, it tolerates +/- 1%
 * deviation from the nominal frequency. All other rates require a precision
 * of 2000 ppm and thus a crystal!
 * Default if not specified: 12 MHz
 */

/* ----------------------- Optional Hardware Config ------------------------ */

/* #define USB_CFG_PULLUP_IOPORTNAME   D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
 * V+, you can connect and disconnect the device from firmware by calling
 * the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
 * This constant defines the port on which the pullup resistor is connected.
 */
/* #define USB_CFG_PULLUP_BIT          4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
 * above) where the 1.5k pullup resistor is connected. See description
 * above for details.
 */

/* ------------------------------------------------------------------------- */
/* ---------------------- feature / code size options ---------------------- */
/* ------------------------------------------------------------------------- */

#define HAVE_EEPROM_PAGED_ACCESS    1
/* If HAVE_EEPROM_PAGED_ACCESS is defined to 1, page mode access to EEPROM is
 * compiled in. Whether page mode or byte mode access is used by AVRDUDE
 * depends on the target device. Page mode is only used if the device supports
 * it, e.g. for the ATMega88, 168 etc. You can save quite a bit of memory by
 * disabling page mode EEPROM access. Costs ~ 138 bytes.
 */
#define HAVE_EEPROM_BYTE_ACCESS     1
/* If HAVE_EEPROM_BYTE_ACCESS is defined to 1, byte mode access to EEPROM is
 * compiled in. Byte mode is only used if the device (as identified by its
 * signature) does not support page mode for EEPROM. It is required for
 * accessing the EEPROM on the ATMega8. Costs ~54 bytes.
 */
#define BOOTLOADER_CAN_EXIT         1
/* If this macro is defined to 1, the boot loader will exit shortly after the
 * programmer closes the connection to the device. Costs ~36 bytes.
 */
#define HAVE_CHIP_ERASE             0
/* If this macro is defined to 1, the boot loader implements the Chip Erase
 * ISP command. Otherwise pages are erased on demand before they are written.
 */
#define SIGNATURE_BYTES             0x1e, 0x93, 0x07, 0     /* ATMega8 */
/* This macro defines the signature bytes returned by the emulated USBasp to
 * the programmer software. They should match the actual device at least in
 * memory size and features. If you don't define this, values for ATMega8,
 * ATMega88, ATMega168 and ATMega328 are guessed correctly.
 */

/* The following block guesses feature options so that the resulting code
 * should fit into 2k bytes boot block with the given device and clock rate.
 * Activate by passing "-DUSE_AUTOCONFIG=1" to the compiler.
 * This requires gcc 3.4.6 for small enough code size!
 */
#if USE_AUTOCONFIG
#   undef HAVE_EEPROM_PAGED_ACCESS
#   define HAVE_EEPROM_PAGED_ACCESS     (USB_CFG_CLOCK_KHZ >= 16000)
#   undef HAVE_EEPROM_BYTE_ACCESS
#   define HAVE_EEPROM_BYTE_ACCESS      1
#   undef BOOTLOADER_CAN_EXIT
#   define BOOTLOADER_CAN_EXIT          1
#   undef SIGNATURE_BYTES
#endif /* USE_AUTOCONFIG */

/* ------------------------------------------------------------------------- */

/* Example configuration: Port D bit 3 is connected to a jumper which ties
 * this pin to GND if the boot loader is requested. Initialization allows
 * several clock cycles for the input voltage to stabilize before
 * bootLoaderCondition() samples the value.
 * We use a function for bootLoaderInit() for convenience and a macro for
 * bootLoaderCondition() for efficiency.
 */

#ifndef __ASSEMBLER__   /* assembler cannot parse function definitions */

#define JUMPER_BIT  7   /* jumper is connected to this bit in port D, active low */

#ifndef MCUCSR          /* compatibility between ATMega8 and ATMega88 */
#   define MCUCSR   MCUSR
#endif

static inline void  bootLoaderInit(void)
{
    PORTD |= (1 << JUMPER_BIT);     /* activate pull-up */
    if(!(MCUCSR & (1 << EXTRF)))    /* If this was not an external reset, ignore */
        leaveBootloader();
    MCUCSR = 0;                     /* clear all reset flags for next time */
}

static inline void  bootLoaderExit(void)
{
    PORTD = 0;                      /* undo bootLoaderInit() changes */
}

#define bootLoaderCondition()   ((PIND & (1 << JUMPER_BIT)) == 0)

#endif /* __ASSEMBLER__ */

/* ------------------------------------------------------------------------- */

#endif /* __bootloader_h_included__ */




/* Name: usbconfig.h
 * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
 * Author: Christian Starkjohann
 * Creation Date: 2005-04-01
 * Tabsize: 4
 * Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
 * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
 * This Revision: $Id: usbconfig.h 799 2010-07-27 17:30:13Z cs $
 */

#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__

/* YOU SHOULD NOT NEED TO MODIFY THIS FILE! All configurations are supposed
 * to go into bootloaderconfig.h!
 */

/* ---------------------------- Hardware Config ---------------------------- */

/* All the port and pin assignments, as well as the clock speed and CRC
   setting are now in bootloaderconfig.h: */

#include "bootloaderconfig.h"

/* --------------------------- Functional Range ---------------------------- */

#define USB_CFG_HAVE_INTRIN_ENDPOINT    0
/* Define this to 1 if you want to compile a version with two endpoints: The
 * default control endpoint 0 and an interrupt-in endpoint (any other endpoint
 * number).
 */
#define USB_CFG_HAVE_INTRIN_ENDPOINT3   0
/* Define this to 1 if you want to compile a version with three endpoints: The
 * default control endpoint 0, an interrupt-in endpoint 3 (or the number
 * configured below) and a catch-all default interrupt-in endpoint as above.
 * You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
 */
#define USB_CFG_EP3_NUMBER              3
/* If the so-called endpoint 3 is used, it can now be configured to any other
 * endpoint number (except 0) with this macro. Default if undefined is 3.
 */
/* #define USB_INITIAL_DATATOKEN           USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
 * interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
 * Since the token is toggled BEFORE sending any data, the first packet is
 * sent with the oposite value of this configuration!
 */
#define USB_CFG_IMPLEMENT_HALT          0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
 * for endpoint 1 (interrupt endpoint). Although you may not need this feature,
 * it is required by the standard. We have made it a config option because it
 * bloats the code considerably.
 */
#define USB_CFG_SUPPRESS_INTR_CODE      0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
 * want to send any data over them. If this macro is defined to 1, functions
 * usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
 * you need the interrupt-in endpoints in order to comply to an interface
 * (e.g. HID), but never want to send any data. This option saves a couple
 * of bytes in flash memory and the transmit buffers in RAM.
 */
#define USB_CFG_INTR_POLL_INTERVAL      10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
 * interval. The value is in milliseconds and must not be less than 10 ms for
 * low speed devices.
 */
#ifndef USB_CFG_IS_SELF_POWERED // allow bootloaderconfig.h to override
#define USB_CFG_IS_SELF_POWERED         0
#endif
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
 * device is powered from the USB bus.
 */
#ifndef USB_CFG_MAX_BUS_POWER   // allow bootloaderconfig.h to override
#define USB_CFG_MAX_BUS_POWER           100
#endif
/* Set this variable to the maximum USB bus power consumption of your device.
 * The value is in milliamperes. [It will be divided by two since USB
 * communicates power requirements in units of 2 mA.]
 */
#define USB_CFG_IMPLEMENT_FN_WRITE      1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
 * transfers. Set it to 0 if you don't need it and want to save a couple of
 * bytes.
 */
#define USB_CFG_IMPLEMENT_FN_READ       1
/* Set this to 1 if you need to send control replies which are generated
 * "on the fly" when usbFunctionRead() is called. If you only want to send
 * data from a static buffer, set it to 0 and return the data from
 * usbFunctionSetup(). This saves a couple of bytes.
 */
#define USB_CFG_IMPLEMENT_FN_WRITEOUT   0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
 * You must implement the function usbFunctionWriteOut() which receives all
 * interrupt/bulk data sent to any endpoint other than 0. The endpoint number
 * can be found in 'usbRxToken'.
 */
#define USB_CFG_HAVE_FLOWCONTROL        0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
 * of the macros usbDisableAllRequests() and usbEnableAllRequests() in
 * usbdrv.h.
 */
#define USB_CFG_DRIVER_FLASH_PAGE       0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
 * where the driver's constants (descriptors) are located. Or in other words:
 * Define this to 1 for boot loaders on the ATMega128.
 */
#define USB_CFG_LONG_TRANSFERS          0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
 * in a single control-in or control-out transfer. Note that the capability
 * for long transfers increases the driver size.
 */
/* #define USB_RX_USER_HOOK(data, len)     if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
 * defined, it's inserted at the beginning of received message processing.
 * If you eat the received message and don't want default processing to
 * proceed, do a return after doing your things. One possible application
 * (besides debugging) is to flash a status LED on each packet.
 */
/* #define USB_RESET_HOOK(resetStarts)     if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
 * one parameter which distinguishes between the start of RESET state and its
 * end.
 */
/* #define USB_SET_ADDRESS_HOOK()              hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
 * received.
 */
#define USB_COUNT_SOF                   0
/* define this macro to 1 if you need the global variable "usbSofCount" which
 * counts SOF packets. This feature requires that the hardware interrupt is
 * connected to D- instead of D+.
 */
/* #ifdef __ASSEMBLER__
 * macro myAssemblerMacro
 *     in      YL, TCNT0
 *     sts     timer0Snapshot, YL
 *     endm
 * #endif
 * #define USB_SOF_HOOK                    myAssemblerMacro
 * This macro (if defined) is executed in the assembler module when a
 * Start Of Frame condition is detected. It is recommended to define it to
 * the name of an assembler macro which is defined here as well so that more
 * than one assembler instruction can be used. The macro may use the register
 * YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
 * immediately after an SOF pulse may be lost and must be retried by the host.
 * What can you do with this hook? Since the SOF signal occurs exactly every
 * 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
 * designs running on the internal RC oscillator.
 * Please note that Start Of Frame detection works only if D- is wired to the
 * interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
 */
#define USB_CFG_CHECK_DATA_TOGGLING     0
/* define this macro to 1 if you want to filter out duplicate data packets
 * sent by the host. Duplicates occur only as a consequence of communication
 * errors, when the host does not receive an ACK. Please note that you need to
 * implement the filtering yourself in usbFunctionWriteOut() and
 * usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
 * for each control- and out-endpoint to check for duplicate packets.
 */
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH   0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
 * compiled in. This function can be used to calibrate the AVR's RC oscillator.
 */
#define USB_USE_FAST_CRC                0
/* The assembler module has two implementations for the CRC algorithm. One is
 * faster, the other is smaller. This CRC routine is only used for transmitted
 * messages where timing is not critical. The faster routine needs 31 cycles
 * per byte while the smaller one needs 61 to 69 cycles. The faster routine
 * may be worth the 32 bytes bigger code size if you transmit lots of data and
 * run the AVR close to its limit.
 */

/* -------------------------- Device Description --------------------------- */

#define USB_CFG_VENDOR_ID  0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
/* USB vendor ID for the device, low byte first. If you have registered your
 * own Vendor ID, define it here. Otherwise you may use one of obdev's free
 * shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
 */
#define  USB_CFG_DEVICE_ID       0xdc, 0x05 /* = 0x05dc = 1500 */
/* This is the ID of the product, low byte first. It is interpreted in the
 * scope of the vendor ID. If you have registered your own VID with usb.org
 * or if you have licensed a PID from somebody else, define it here. Otherwise
 * you may use one of obdev's free shared VID/PID pairs. See the file
 * USB-IDs-for-free.txt for details!
 */
#define USB_CFG_DEVICE_VERSION  0x02, 0x01
/* Version number of the device: Minor number first, then major number.
 */
#define USB_CFG_VENDOR_NAME 'w','w','w','.','f','i','s','c','h','l','.','d','e'
#define USB_CFG_VENDOR_NAME_LEN 13
/* These two values define the vendor name returned by the USB device. The name
 * must be given as a list of characters under single quotes. The characters
 * are interpreted as Unicode (UTF-16) entities.
 * If you don't want a vendor name string, undefine these macros.
 * ALWAYS define a vendor name containing your Internet domain name if you use
 * obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
 * details.
 */
#define USB_CFG_DEVICE_NAME 'U', 'S', 'B', 'a', 's', 'p'
#define USB_CFG_DEVICE_NAME_LEN 6
/* Same as above for the device name. If you don't want a device name, undefine
 * the macros. See the file USB-IDs-for-free.txt before you assign a name if
 * you use a shared VID/PID.
 */
/*#define USB_CFG_SERIAL_NUMBER   'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN   0 */
/* Same as above for the serial number. If you don't want a serial number,
 * undefine the macros.
 * It may be useful to provide the serial number through other means than at
 * compile time. See the section about descriptor properties below for how
 * to fine tune control over USB descriptors such as the string descriptor
 * for the serial number.
 */
#define USB_CFG_DEVICE_CLASS        0xff    /* set to 0 if deferred to interface */
#define USB_CFG_DEVICE_SUBCLASS     0
/* See USB specification if you want to conform to an existing device class.
 * Class 0xff is "vendor specific".
 */
#define USB_CFG_INTERFACE_CLASS     0   /* define class here if not at device level */
#define USB_CFG_INTERFACE_SUBCLASS  0
#define USB_CFG_INTERFACE_PROTOCOL  0
/* See USB specification if you want to conform to an existing device class or
 * protocol. The following classes must be set at interface level:
 * HID class is 3, no subclass and protocol required (but may be useful!)
 * CDC class is 2, use subclass 2 and protocol 1 for ACM
 */
/* #define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH    42 */
/* Define this to the length of the HID report descriptor, if you implement
 * an HID device. Otherwise don't define it or define it to 0.
 * If you use this define, you must add a PROGMEM character array named
 * "usbHidReportDescriptor" to your code which contains the report descriptor.
 * Don't forget to keep the array and this define in sync!
 */

#define USB_PUBLIC static
/* Use the define above if you #include usbdrv.c instead of linking against it.
 * This technique saves a couple of bytes in flash memory.
 */

/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
 * provide our own. These can be provided as (1) fixed length static data in
 * flash memory, (2) fixed length static data in RAM or (3) dynamically at
 * runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
 * information about this function.
 * Descriptor handling is configured through the descriptor's properties. If
 * no properties are defined or if they are 0, the default descriptor is used.
 * Possible properties are:
 *   + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
 *     at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
 *     used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
 *     you want RAM pointers.
 *   + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
 *     in static memory is in RAM, not in flash memory.
 *   + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
 *     the driver must know the descriptor's length. The descriptor itself is
 *     found at the address of a well known identifier (see below).
 * List of static descriptor names (must be declared PROGMEM if in flash):
 *   char usbDescriptorDevice[];
 *   char usbDescriptorConfiguration[];
 *   char usbDescriptorHidReport[];
 *   char usbDescriptorString0[];
 *   int usbDescriptorStringVendor[];
 *   int usbDescriptorStringDevice[];
 *   int usbDescriptorStringSerialNumber[];
 * Other descriptors can't be provided statically, they must be provided
 * dynamically at runtime.
 *
 * Descriptor properties are or-ed or added together, e.g.:
 * #define USB_CFG_DESCR_PROPS_DEVICE   (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
 *
 * The following descriptors are defined:
 *   USB_CFG_DESCR_PROPS_DEVICE
 *   USB_CFG_DESCR_PROPS_CONFIGURATION
 *   USB_CFG_DESCR_PROPS_STRINGS
 *   USB_CFG_DESCR_PROPS_STRING_0
 *   USB_CFG_DESCR_PROPS_STRING_VENDOR
 *   USB_CFG_DESCR_PROPS_STRING_PRODUCT
 *   USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
 *   USB_CFG_DESCR_PROPS_HID
 *   USB_CFG_DESCR_PROPS_HID_REPORT
 *   USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
 *
 * Note about string descriptors: String descriptors are not just strings, they
 * are Unicode strings prefixed with a 2 byte header. Example:
 * int  serialNumberDescriptor[] = {
 *     USB_STRING_DESCRIPTOR_HEADER(6),
 *     'S', 'e', 'r', 'i', 'a', 'l'
 * };
 */

#define USB_CFG_DESCR_PROPS_DEVICE                  0
#define USB_CFG_DESCR_PROPS_CONFIGURATION           0
#define USB_CFG_DESCR_PROPS_STRINGS                 0
#define USB_CFG_DESCR_PROPS_STRING_0                0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR           0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT          0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER    0
#define USB_CFG_DESCR_PROPS_HID                     0
#define USB_CFG_DESCR_PROPS_HID_REPORT              0
#define USB_CFG_DESCR_PROPS_UNKNOWN                 0

/* ----------------------- Optional MCU Description ------------------------ */

/* The following configurations have working defaults in usbdrv.h. You
 * usually don't need to set them explicitly. Only if you want to run
 * the driver on a device which is not yet supported or with a compiler
 * which is not fully supported (such as IAR C) or if you use a differnt
 * interrupt than INT0, you may have to define some of these.
 */
#define USB_INTR_CFG            EICRA 
#define USB_INTR_CFG_SET        ((1 << ISC10) | (1 << ISC11)) 
#define USB_INTR_CFG_CLR        0 
#define USB_INTR_ENABLE         EIMSK 
#define USB_INTR_ENABLE_BIT     INT1 
#define USB_INTR_PENDING        EIFR 
#define USB_INTR_PENDING_BIT    INTF1 
#define USB_INTR_VECTOR         INT1_vect

#endif /* __usbconfig_h_included__ */



Paste this section into the arduino IDE's 'boards.txt' file. In Linux, this is in arduino-0022/hardware/arduino/boards.txt or similar. Not sure where it is in Windows or Mac.


##############################################################

nanode.name=Nanode w/ USB programming and ATmega328

nanode.upload.protocol=usbasp
nanode.upload.maximum_size=30720
nanode.upload.speed=19200

nanode.bootloader.low_fuses=0xFF
nanode.bootloader.high_fuses=0xDA
nanode.bootloader.extended_fuses=0x05
nanode.bootloader.path=atmega
nanode.bootloader.file=mega328p_16mhz_nanode.hex
nanode.bootloader.unlock_bits=0x3F
nanode.bootloader.lock_bits=0x0F

nanode.build.mcu=atmega328p
nanode.build.f_cpu=16000000L
nanode.build.core=arduino

nanode.upload.disable_flushing=true

##############################################################


Ready-built bootloader

This is the main.hex generated by the use of the config files above.

It needs to be in arduino-0022/hardware/arduino/bootloaders/atmega/mega328p_16mhz_nanode.hex to match the config file above. This should allow programming via the arduino 'Program bootloader' mechanism, but I haven't tried it - I used avrdude directly.


:107800005CC0000075C000008DC0000071C00000A9
:107810006FC000006DC000006BC0000069C00000B8
:1078200067C0000065C0000063C0000061C00000C8
:107830005FC000005DC000005BC0000059C00000D8
:1078400057C0000055C0000053C0000051C00000E8
:107850004FC000004DC000004BC0000049C00000F8
:1078600047C0000045C00000040309041C03770062
:10787000770077002E0066006900730063006800DF
:107880006C002E00640065000E035500530042009A
:1078900061007300700012011001FF000008C016A3
:1078A000DC05020101020001090212000101008051
:1078B0003209040000000000000011241FBECFEFB9
:1078C000D8E0DEBFCDBF11E0A0E0B1E0E4ECFFE71F
:1078D00002C005900D92A630B107D9F711E0A6E0DD
:1078E000B1E001C01D92AD33B107E1F73CD168C3EF
:1078F00087CFA82FB92F80E090E041E050EA609553
:1079000030E009C02D9182279795879510F0842744
:107910009527305EC8F36F5FA8F30895EADF8D9373
:107920009D930895CF93CFB7CF93DF93C3954C9B8F
:10793000E9F74C9B0BC04C9B09C04C9B07C04C9B70
:1079400005C04C9B03C04C9B01C089C06F93C09184
:107950002001DD27C95DDE4F2F9365E54C9B03C0F9
:107960002F916F91E6CF0F931F934F9320E040E14B
:107970005F9309B1087104FB27F93F9350E03BE0A6
:1079800039C0187140642F77012F5F5F1EC04068B7
:1079900019B118712F7752501FC0406409B12F7769
:1079A0000871D1F15F5F00C023C0406219B12F7729
:1079B000187191F15F5F00C025C008711027515008
:1079C00012F45D5F0000115027952C3F19B1C8F6E5
:1079D00018710127015027952C3FC8F6422749937B
:1079E00009B1087110274F73115027952C3FA8F645
:1079F0004695469519B1187179F0012701502795E0
:107A00002C3F98F66B5A60F3315009B1B0F600C0C4
:107A100012E01CBB002717C03B503195C31BD04060
:107A200012E01CBB0881033CF9F00B34E9F0209113
:107A30001E011981110F1213EDCF093651F10D32CC
:107A400011F0013E39F7009325013F915F914F916D
:107A50001F910F912F916F91CCB3C1FD67CFDF9133
:107A6000CF91CFBFCF91189520912501222369F3A3
:107A700010912301112339F534303AF13093230169
:107A800020931F01109120013BE0311B3093200116
:107A90001CC0009123010130B4F40AE530910001CB
:107AA00034FD14C000930001C3E1D1E013C00527E9
:107AB00010E000C000000BB91AC0052710E0221F1B
:107AC0001DC010E021C04AE502C032ED432FC4E1E1
:107AD000D0E032E01AB118615C9A0BB11AB958E1E2
:107AE00020E865E320FF05270BB9279517951C3F74
:107AF000F0F66695B8F7B1F720FF05270BB9279583
:107B000017951C3FD0F62795179517FF05270000FE
:107B10001C3F0BB9B0F629913A9519F7077E1091E1
:107B20002401110FC651D0400BB911F010931E0162
:107B300012E01CBB00611AB1177E402F477E54E053
:107B40005A95F1F70BB91AB94BB97FCF1BB8F89416
:107B50001DBA1092690081E085BF15BEE091110148
:107B6000F0911201099588E10FB6F89480936000B6
:107B7000109260000FBE5F9A04B601FE0AC214BEE6
:107B800081E085BF82E085BF4F9903C28091690083
:107B90008C6080936900E99A549A20E005C0A8950A
:107BA00080EA9FE00197F1F72150C9F75498789443
:107BB000CC24DD2490912301935097FD61C18091E5
:107BC00020010CE010E0081B1109095D1E4F809197
:107BD0001F018D3209F0DDC0983009F04FC183ECF0
:107BE000809313018AE58093000110920A01D80165
:107BF0003C91832F807611962C911197882309F45C
:107C000051C086E091E090932201809321012330BE
:107C1000F9F413969C91139714968C9114971296DD
:107C20002C91203339F48370E82FF0E0EE5FFE4FA3
:107C300080810AC0203A11F4ADD106C0203C19F46D
:107C4000F8016581AFD180E08093090194E093C091
:107C5000253011F491E08FC0822F84508630D8F403
:107C6000D80112968D919C91139790930D0180935A
:107C70000C012930A9F016969C91169790930E014D
:107C800015968C91827080930F012093100137FD1F
:107C90006DC02FEF6CC0223019F481E080930B018E
:107CA00090E069C0F801828110921C01222331F416
:107CB00010921D012CE131E092E053C0253019F4FF
:107CC000809324014BC02630C9F5D80113968C91BE
:107CD000813019F486E998E704C0823041F488EADB
:107CE00098E7909322018093210192E123C0833091
:107CF00001F5F8018281882341F488E698E79093A2
:107D000022018093210194E015C0813041F48CE67A
:107D100098E790932201809321019CE10BC082306F
:107D200041F488E898E790932201809321019EE036
:107D300001C090E080E480930A011DC0283019F44E
:107D400026E231E009C0293019F48093260106C0EB
:107D50002A3021F42CE131E091E003C02CE131E044
:107D600090E0309322012093210105C0292F80E863
:107D700080930A010BC0D80117968C91179788231E
:107D800021F416962C91291708F0292F2093010130
:107D900075C080910A0187FF71C080910E01F92E94
:107DA000891708F4F82E8F1980930E01EE2488238A
:107DB00011F4EE24E39480911001873010F0E80173
:107DC00014C050910F01E0910C01F0910D0140E0C1
:107DD0004AC080910C0190910D01019690930D0184
:107DE00080930C0101976991DDD0FE01E01BEF1536
:107DF00080F340C0CF018F779070892B49F4F894BD
:107E000083E080935700E895789407B600FCFDCF97
:107E10004E5FF894D8018D919D918D0121E00C0168
:107E200020935700E895112478949F012E5F3F4FCF
:107E3000C9018F779070892B31F0EE2099F04F15A2
:107E400088F0552379F0F89485E080935700E89501
:107E5000789407B600FCFDCFF89481E18093570039
:107E6000E8957894F9014F1508F4C4CFF0930D010B
:107E7000E0930C01EE2011F0109201011092230109
:107E80008091000184FF71C0809101018F3F09F44E
:107E90006CC0182F893008F018E0811B8093010115
:107EA0008091130198E8892780931301112309F425
:107EB0004AC080910A0187FF2AC080910E01811774
:107EC00008F4182F811B80930E0100911001C4E16A
:107ED000D1E015C0E0910C01F0910D01073018F0D0
:107EE000CF0158D001C084918883219680910C01E4
:107EF00090910D01019690930D0180930C01812FBB
:107F000090E08C5E9E4FC817D90721F71AC0E09108
:107F10002101F091220186FF09C0912FA4E1B1E077
:107F200084918D9331969150D9F707C0912FA4E198
:107F3000B1E081918D939150E1F7F0932201E093AC
:107F40002101193060F484E191E0612FE7DC612FB9
:107F50006C5F6C3041F08FEF8093010104C08FEFB4
:107F6000809301016EE16093000194E189B1887111
:107F700031F49150D9F71092240110921E01809192
:107F80000B01882321F0CA9411F4DA9411F04F9B6D
:107F900011CEDCDDF999FECF92BD81BDF89A99270B
:107FA00080B50895262FF999FECF1FBA92BD81BDE5
:107FB00020BD0FB6F894FA9AF99A0FBE019608956B
:047FC000F894FFCF63
:067FC4005AFF1E950F009C
:040000030000780081
:00000001FF