607
edits
m (→Logic Gates) |
m (Scaling memory.) |
||
| Line 53: | Line 53: | ||
* a 5mm ball representing a 1 and a 4mm ball representing a 0 | * a 5mm ball representing a 1 and a 4mm ball representing a 0 | ||
Do we read individual bit or a whole nibble? Nibbles make addressing easier. With a 16x16 grid of nibbles (so 32x32 ball slots) you'd be able to use 2 nibbles as an address (16x16 = 256 = 2^8). This would give 1 kilobit (256 nibbles) of memory. If we're using 4/5mm bearings and you allow 8mm by memory cell then this memory would be about 26cm to a side. | Do we read individual bit or a whole nibble? Nibbles make addressing easier. With a 16x16 grid of nibbles (so 32x32 ball slots) you'd be able to use 2 nibbles as an address (16x16 = 256 = 2^8). This would give 1 kilobit (256 nibbles) of memory. If we're using 4/5mm bearings and you allow 8mm by memory cell then this memory would be about 26cm to a side. | ||
' | Physically this doesn't scale too horrendously. If we want to get ambitious then a 64x64 grid of nibbles (128x128 ball slots) would store 4096 nibbles, but would require 3 nibble addresses (12 bits) and be around 1m to a side (it would also require over 16 thousand ball bearings!). | ||
We also need to consider whether we have some sort of stack or registers for the actual calculations (i.e. where do we read/write to and from). | |||